

Multivessel disease and CTO - an indication for CABG The role of surgery in CTO and MV disease

Nuno Carvalho Guerra

ESC/EACTS GUIDELINES

European Journal of Cardio-Thoracic Surgery 55 (2019) 4-90 doi:10.1093/ejcts/ezy289 Advance Access publication 27 August 2018

Cite this article as: Sousa-Uva M, Neumann F-J, Ahlsson A, Alfonso F, Banning AP, Benedetto U et al. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur J Cardiothorac Surg 2019;55:4-90.

2018 ESC/EACTS Guidelines on myocardial revascularization

The Task Force on myocardial revascularization of the European Society of Cardiology (ESC) and European Association for Cardio-Thoracic Surgery (EACTS)

Developed with the special contribution of the European Association for Percutaneous Cardiovascular Interventions (EAPCI)

"Broadly speaking, the treatment of CTOs may be considered analogous to the treatment of non-CTO lesions"

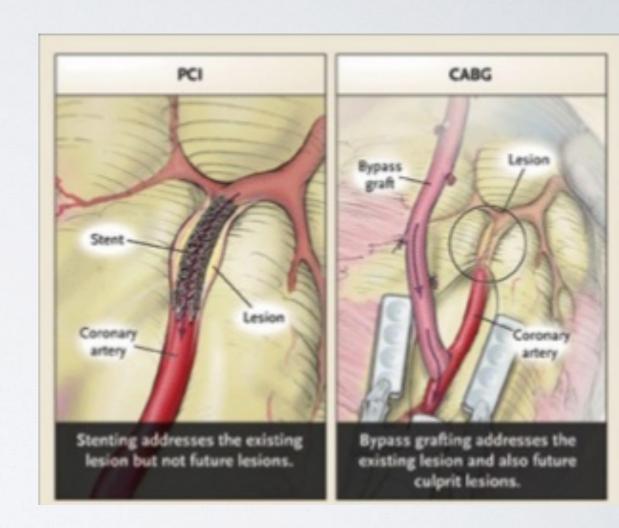
Recommendations according to extent of CAD	CA	BG	PCI	
	Class ^a Level ^b		Classa	Level ^b
One-vessel CAD	•			
Without proximal LAD stenosis.	llb	С	1	С
With proximal LAD stenosis [68, 101, 139-144].	I	Α	T	A
Two-vessel CAD				
Without proximal LAD stenosis.	IIb	С	I	С
With proximal LAD stenosis [68, 70, 73].	I	В	- I	С
Left main CAD				
Left main disease with low SYNTAX score (0-22) [69, 121, 122, 124, 145-148].	1	A	1	A
Left main disease with intermediate SYNTAX score (23–32) [69, 121, 122, 124, 145–148].	- 1	А	lla	А
Left main disease with high SYNTAX score (<u>></u> 33) [69, 121, 122, 124, 146–148]. ^c	- 1	А	Ш	В
Three-vessel CAD without diabetes mellitus				
Three-vessel disease with low SYNTAX score (0-22) [102, 105, 121, 123, 124, 135, 149].	1	А	1	A
Three-vessel disease with intermediate or high SYNTAX score (>22) [102, 105, 121, 123, 124, 135, 149].c	- 1	А	Ш	A
Three-vessel CAD with diabetes mellitus				
Three-vessel disease with low SYNTAX score 0–22 [102, 105, 121, 123, 124, 135, 150–157].	1	А	IIb	A
Three-vessel disease with intermediate or high SYNTAX score (>22) [102, 105, 121, 123, 124, 135, 150-157].c	1	A	Ш	A

COMPLETE VS. INCOMPLETE REVASCULARIZATION IN MVD

Accepted Manuscript

Outcomes after Complete versus Incomplete Revascularization of Patients with Multivessel Coronary Artery Disease: A Meta-Analysis of 89,883 Patients Enrolled in Randomized Clinical Trials and Observational Studies

Santiago Garcia, MD Yader Sandoval, MD Henri Roukoz, MD, MS Selcuk Adabag, MD, MS Mariana Canoniero, MD Demetris Yannopoulos, MD Emmanouil S. Brilakis, MD, PhD


PII: S0735-1097(13)02176-1

DOI: 10.1016/j.jacc.2013.05.033

- Mortality benefit associated with CR was consistent across studies irrespective of revascularization modality and definition of CR.
- CR is achieved more commonly with CABG than PCI. Among patients with MVD CAD, CR may be the optimal revascularization strategy.

PREVENTIVE EFFECT OF CABG

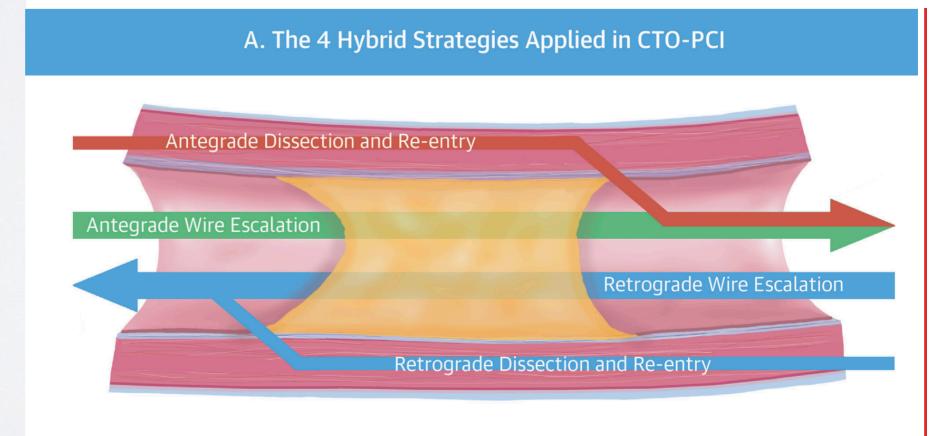
- CABG diminishes the impact of future lesions by providing distal flow
- Arterial grafting, specially IMA grafting, protects and dilates distal coronary vessel
- PCI treats the current lesions

SPECIFICITY OF CTO PCI

JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY
© 2016 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION
PUBLISHED BY ELSEVIER

VOL. 68, NO. 18, 2016 ISSN 0735-1097/\$36.00 http://dx.doi.org/10.1016/j.jacc.2016.08.034

Slightly less successful the non CTO PCI


Complex lesioncrossingtechniques

The Hybrid Algorithm for Treating Chronic Total Occlusions in Europe

The RECHARGE Registry

Joren Maeremans, MSc,^{a,b} Simon Walsh, MD,^c Paul Knaapen, MD, PhD,^d James C. Spratt, MD,^e Alexandre Avran, MD,^f Colm G. Hanratty, MD,^c Benjamin Faurie, MD, PhD,^g Pierfrancesco Agostoni, MD,^{h,i} Erwan Bressollette, MD,^j Peter Kayaert, MD,^k Alan J. Bagnall, MD, PhD,^{l,m} Mohaned Egred, MD,^{l,m} Dave Smith, MD,ⁿ Alexander Chase, MD, PhD,ⁿ Margaret B. McEntegart, MD, PhD,^o William H.T. Smith, MB, BChir, PhD,^p Alun Harcombe, MD,^p Paul Kelly, MD,^q John Irving, MD,^r Elliot J. Smith, MD,^s Julian W. Strange, MD,^t Joseph Dens, MD, PhD^{a,b}

WHY ARE WETALKING ABOUT IT

 Enthusiasm for CTO PCI has increased, as evidence has demonstrated that successful CTO PCI improves the quality of life, the need for CABG, left ventricular function, and potentially even survival.

CTO PCI is feasible and safe

MODERN CTO PCI RESULTS

- 111,273 patients with obstructive coronary artery disease, 26.4% had CTO
- Elective CTO PCI was attempted in 8.1%, with a procedural success rate of 79.7%

Contemporary Incidence, Management, and Long-Term Outcomes of Percutaneous Coronary Interventions for Chronic Coronary Artery Total Occlusions

Insights From the VA CART Program

Thomas T. Tsai, MD, MSc, a,b,c Maggie A. Stanislawski, MS,a,b Kendrick A. Shunk, MD, PhD,d,e Ehrin J. Armstrong, MD, MSc,a,b Gary K. Grunwald, PhD,a,b Alan H. Schob, MD,f,g Javier A. Valle, MD,a,b Carlos E. Alfonso, MD,f,g Brahmajee K. Nallamothu, MD, MPH,h,i P. Michael Ho, MD, PhD,a,b John S. Rumsfeld, MD, PhD,a,b Emmanouil S. Brilakis, MD, PhD,i,k

JACC: CARDIOVASCULAR INTERVENTIONS

VOL. 10, NO. 9, 2017

OVERVIEW OF CTO PCI RESULTS

- ·CTO more common in RCA (42%), LAD
- (24%), and then Cx (16%)
- Success PCI LAD>RCA
- •Increased use of resources, fluoroscopy and IV contrast

Contemporary Incidence, Management, and Long-Term Outcomes of Percutaneous Coronary Interventions for Chronic Coronary Artery Total Occlusions

Insights From the VA CART Program

Thomas T. Tsai, MD, MSc, a,b,c Maggie A. Stanislawski, MS,a,b Kendrick A. Shunk, MD, PhD,d,e Ehrin J. Armstrong, MD, MSc,a,b Gary K. Grunwald, PhD,a,b Alan H. Schob, MD,f,g Javier A. Valle, MD,a,b Carlos E. Alfonso, MD,f,g Brahmajee K. Nallamothu, MD, MPH,h,i P. Michael Ho, MD, PhD,a,b John S. Rumsfeld, MD, PhD,a,b Emmanouil S. Brilakis, MD, PhD,i,k

JACC: CARDIOVASCULAR INTERVENTIONS

PUBLISHED BY ELSEVIER ON BEHALF OF THE AMERICAN

ISSN 1936-8798/\$36.00

VOL. 10, NO. 9, 2017

OVERVIEW OF CTO PCI RESULTS - COMPLICATIONS

TABLE 4 Periprocedural Complications: Failed Chronic Total Occlusion Percutaneous Coronary Intervention Versus Successful Chronic Total Occlusion Percutaneous **Coronary Intervention**

	Total (N = 2,394)		Successful CTO PCI $(n=1,908)$	p Value
Any complications	103 (4.30%)	39 (8.02%)	64 (3.35%)	< 0.0001
Dysrhythmia	7 (0.29%)	1 (0.21%)	6 (0.31%)	1.00
Acute pulmonary edema	0 (0.00%)	0 (0.00%)	0 (0.00%)	1.00
Anaphylactic shock	1 (0.04%)	1 (0.21%)	0 (0.00%)	0.20
Groin hematoma	15 (0.63%)	3 (0.62%)	12 (0.63%)	1.00
Retroperitoneal hematoma	0 (0.00%)	0 (0.00%)	0 (0.00%)	1.00
Acute cardiogenic shock	2 (0.08%)	1 (0.21%)	1 (0.05%)	0.36
Stroke	1 (0.04%)	0 (0.00%)	1 (0.05%)	1.00
Periprocedural MI	3 (0.13%)	3 (0.62%)	0 (0.00%)	0.0083
Cardiac tamponade	1 (0.04%)	0 (0.00%)	1 (0.05%)	0.20
CABG surgery	0 (0.00%)	0 (0.00%)	0 (0.00%)	1.00
Death	0 (0.00%)	0 (0.00%)	0 (0.00%)	1.00
Other complications*	75 (3.13%)	31 (6.38%)	44 (2.31%)	< 0.0001
Other complications: dissection	19 (0.79%)	12 (2.5%)	7 (0.37%)	< 0.001
Other complications: perforation	18 (0.75%)	13 (2.7%)	5 (0.26%)	< 0.001

^{*}Wrist hematoma, wire fractures, electrocardiographic changes, chest pain without electrocardiographic changes, closure device failure, failure to cross CTO, vasospasm, equipment failure, guide dissection, stent loss, aortic dissection, back pain, combative patient, balloon fracture, occluded side branch, and air embolus.

Abbreviations as in Table 1.

Successful CTO PCI is very safe Unsuccessful CTO PCI is less safe but not unnacceptable

Contemporary Incidence, Management, and Long-Term Outcomes of **Percutaneous Coronary Interventions for Chronic Coronary Artery Total Occlusions**

Insights From the VA CART Program

Thomas T. Tsai, MD, MSc, a,b,c Maggie A. Stanislawski, MS, b Kendrick A. Shunk, MD, PhD, d,e Ehrin J. Armstrong, MD, MSc, a,b Gary K. Grunwald, PhD, a,b Alan H. Schob, MD, f,g Javier A. Valle, MD, a,b Carlos E. Alfonso, MD, f,g Brahmajee K. Nallamothu, MD, MPH, h,i P. Michael Ho, MD, PhD, a,b John S. Rumsfeld, MD, PhD, a,b Emmanouil S. Brilakis, MD, PhD^{j,k}

JACC: CARDIOVASCULAR INTERVENTIONS

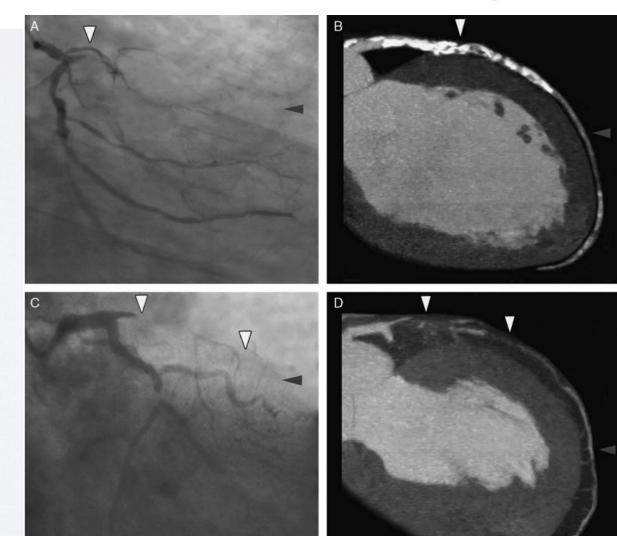
PUBLISHED BY ELSEVIER ON BEHALF OF THE AMERICAN

VOL. 10, NO. 9, 2017

ISSN 1936-8798/\$36.00

SPECIFICITY OF CTO CABG

- Off-pump surgery risk?
- Favorable distal vascular bed
- Competitive flow from collaterals
- Non graftability of CTO vessels
- Periprocedural myocardial injury


IMAGING OF DISTAL VESSEL

- Distal vessel may
 appear to be
 untreatable in
 coronary angiography
- CT scanning may be
 a good way to
 estimate probability
 of grafting but adds
 to total procedural
 costs and radiation

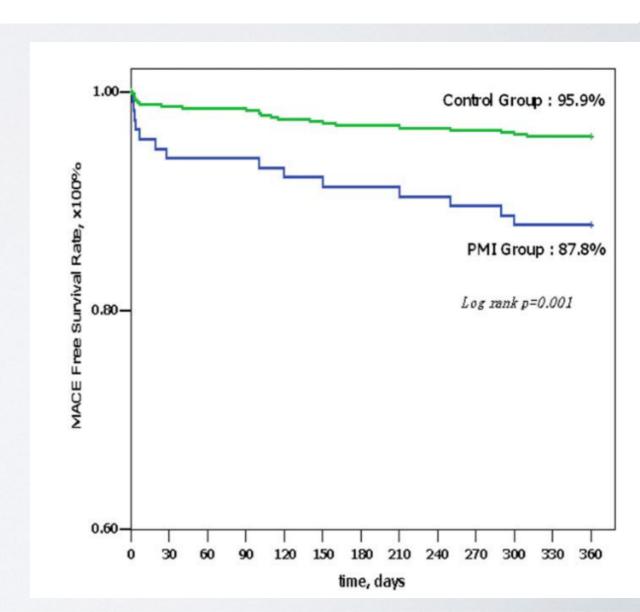
Computed Tomography to Predict Surgical Revascularization of a Left Anterior Descending Artery Occlusion Incompletely Visualized by Conventional Angiography

Cezary Kepka, MD, PhD,* Maksymilian P. Opolski, MD,† Zbigniew Juraszynski, MD, PhD,‡ Mariusz Kruk, MD, PhD,* Jerzy Pregowski, MD, PhD,† Radoslaw Pracon, MD,* Wojciech Dyk, MD, PhD,‡ Marcin Demkow, MD, PhD,* Adam Witkowski, MD, PhD,† and Witold Ruzyllo, MD, PhD*

J Thorac Imaging • Volume 27, Number 3, May 2012

PERIPROCEDURAL MI

- Periprocedural myocardial injury is normally defined biochemically
- MACE may be a more appropriate end-point
- Conflicting results but mainly in favor of no impact on survival


PERIPROCEDURAL MI - PCI

Correlates and Outcomes Related to Periprocedural Myocardial Injury during Percutaneous Coronary Intervention for Chronic Total Occlusion: Results from a Prospective, Single Center PCI Registry

Qi Zhang,¹ мɒ, Jian Hu,¹ мɒ, Zhen Kun Yang,¹ мɒ, Feng Hua Ding,¹ мɒ, Jian Sheng Zhang,¹ мɒ, Run Du,¹ мɒ, Tian Qi Zhu,¹ мɒ, Wei Feng Shen,¹ мɒ, Ajay J. Kirtane,² мɒ, and Rui Yan Zhang,¹* мɒ

Catheterization and Cardiovascular Interventions 87:616-623 (2016)

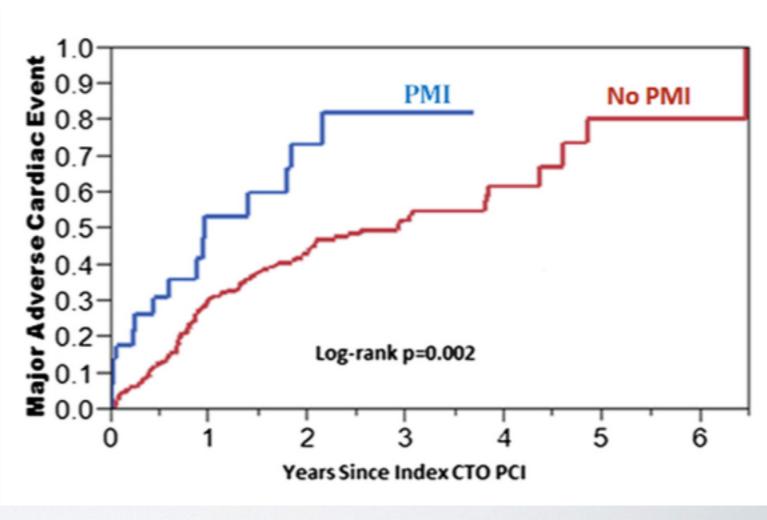
- PP myocardial injury is associated with lower event-free survival
- Predictors of I-year MACE
 - · PP MI
 - MVD
 - · DM
 - Female gender

PERIPROCEDURAL MI - PCI

Periprocedural Myocardial Injury in Chronic Total Occlusion Percutaneous Interventions

A Systematic Cardiac Biomarker Evaluation Study

Nathan Lo, MD,* Tesfaldet T. Michael, MD, MPH,† Danyaal Moin, MD,* Vishal G. Patel, MD,† Mohammed Alomar, MD,† Aristotelis Papayannis, MD,† Daisha Cipher, PhD,‡ Shuaib M. Abdullah, MD,† Subhash Banerjee, MD,† Emmanouil S. Brilakis, MD, PhD†

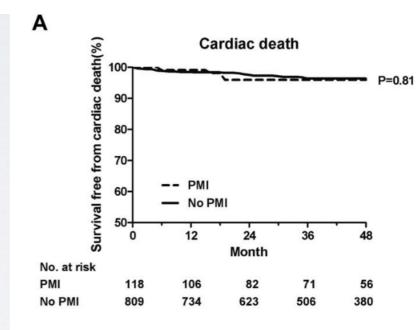

JACC: CARDIOVASCULAR INTERVENTIONS

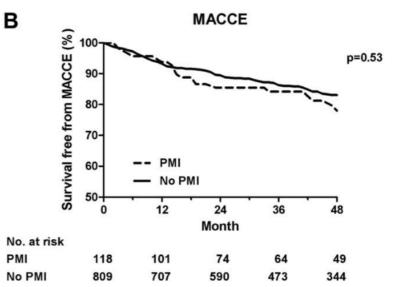
© 2014 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION
PUBLISHED BY ELSEVIER INC.

VOL. 7, NO. 1, 2014 ISSN 1936-8798/\$36.00

http://dx.doi.org/10.1016/j.jcin.2013.07.011

PP myocardial injury increases
 MACE long term


PERIPROCEDURAL MI - PCIVS. CABG


Association of Periprocedural Myocardial Infarction With Long-Term Survival in Patients Treated With Coronary Revascularization Therapy of Chronic Total Occlusion

Woo Jin Jang, MD, Jeong Hoon Yang, MD, PhD, Seung-Hyuk Choi, MD, PhD, Young Bin Song, MD, PhD, Joo-Yong Hahn, MD, PhD, Wook Sung Kim, MD, PhD, Young Tak Lee, MD, PhD, Bum-Sung Kim, MD, and Hyeon-Cheol Gwon, PhD

Catheterization and Cardiovascular Interventions 87:1042–1049 (2016)

- F-UP 42 months
- 10,5% PCI and 16,1% CABG
 had PP MI
- PPMI group and no-PPMI group had similar incidence of cardiac death

PERIPROCEDURAL MI - CROSSING TECHNIQUE

Impact of Crossing Technique on the Incidence of Periprocedural Myocardial Infarction During Chronic Total Occlusion Percutaneous Coronary Intervention

Jeffrey Stetler, вs, Aris Karatasakis, мр, Georgios E. Christakopoulos, мр, Muhammad Nauman J. Tarar, мр, Suwetha Amsavelu, вs, Krishna Patel, вs, Bavana V. Rangan, врз, мрн, Michele Roesle, км, взм, Erica Resendes, вs, мs, Jerrold Grodin, мр, Shuaib Abdullah, мр, Subhash Banerjee, мр, and Emmanouil S. Brilakis,* мр, Рнр

- Retrograde technique used in more complex CTO's, longer CTO's
- Retrograde technique more PPMI - 33% vs. 10% (p=0.0001)

DOI: 10.1002/ccd.26505

GENDER AND REVASCULARIZATION TECHNIQUE

Catheterization and Cardiovascular Interventions 87:1063–1070 (2016)

Gender Differences in the Prevalence and Treatment of Coronary Chronic Total Occlusions

Rafael Wolff, MD, Paul Fefer, MD, Merril L. Knudtson, MD, Asim N. Cheema, 4,5 мD, PhD, P. Diane Galbraith, BN, мsc, John D. Sparkes, Msc, Graham A. Wright, PhD, Harindra C. Wijeysundera, 1,5,6,7 мD, PhD, and Bradley H. Strauss, 1,5* мD, PhD

 Women have lower prevalence of CTO's and lower usage of CABG for treating CTO's (smaller distal vessels?)

GENDER AND REVASCULARIZATION TECHNIQUE

Gender Differences in Long-Term Clinical Outcomes After Percutaneous Coronary Intervention of Chronic Total Occlusions

Volume 24 - Issue 10 - October 2012

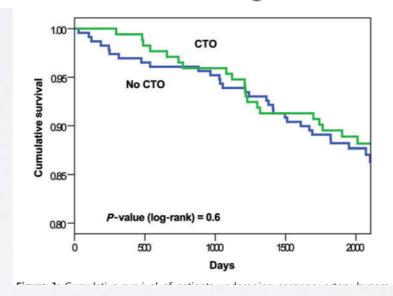
Bimmer E. Claessen, MD, PhD^{1,2}, Alaide Chieffo, MD³, George D. Dangas, MD, PhD^{1,4}, Cosmo Godino, MD³, Seung-Whan Lee, MD⁵, Kotaro Obunai, MD¹, Mauro Carlino, MD³, Vaso Chantziara, MD⁶, Irini Apostolidou, MD⁶, José P.S. Henriques, MD, PhD², Martin B. Leon, MD^{1,6}, Carlo Di Mario, MD, PhD⁷, Seung-Jung Park, MD⁵, Gregg W. Stone, MD^{1,6}, Jeffrey W. Moses, MD^{1,6}, Antonio Colombo, MD³, Roxana Mehran, MD^{1,4}, on behalf of the Multinational CTO Registry

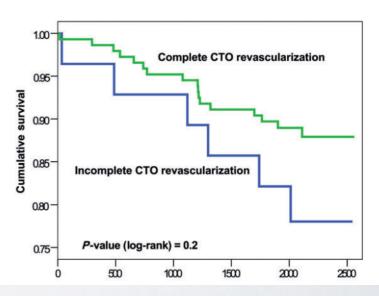
J Invasive Cardiol. 2012 Oct;24(10):484-8

Men have a greater benefit in mortality and MACE

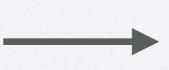
than women after a CTO PCI

IMPACT ON MORTALITY OF CABG PATIENTS


Interactive CardioVascular and Thoracic Surgery 18 (2014) 713-716 doi:10.1093/icvts/ivu038 Advance Access publication 11 March 2014

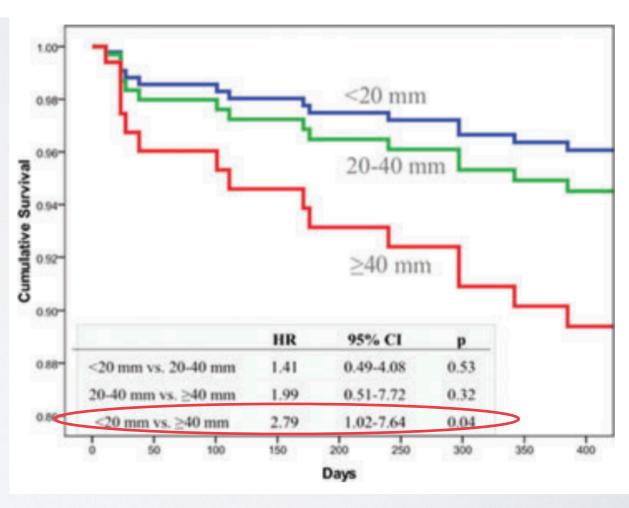

ORIGINAL ARTICLE - ADULT CARDIAC

Impact of coronary chronic total occlusions on long-term mortality in patients undergoing coronary artery bypass grafting


Paul Fefer^{1*}, Sharon Gannot¹, Ksenya Kochkina, Elad Maor, Shlomi Matetzky, Ehud Raanani, Victor Guetta and Amit Segev

 CTOs have no impact on long term mortality after
 CABG (all LAD's bypassed)

Incomplete CTO
 revascularization does not
 affect survival! [or does it?]


Not grafting a CTO vessel is difficult for a surgeon!

IMPACT ON MORTALITY OF CABG PATIENTS

Influence of Chronic Total Occlusions on Coronary Artery Bypass Graft Surgical Outcomes

Subhash Banerjee, M.D.,*† Ryan G Master, M.D.,† Matthias Peltz, M.D.,† Bernice Willis, R.N.,* Atif Mohammed, M.D.,† Bertis B. Little, Ph.D.,* Michael J. DiMaio, M.D.,† Michael E. Jessen, M.D.,† and Emmanouil S. Brilakis, M.D., Ph.D.*†

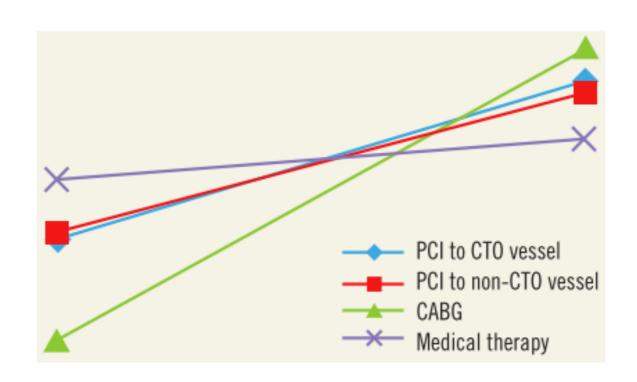
Very long CTO's
 (>40mm) compromise
 survival after CABG

COLLATERAL FLOW AND CABG

Interactive CardioVascular and Thoracic Surgery 17 (2013) 944–949 doi:10.1093/icvts/ivt337 Advance Access publication 19 August 2013 ORIGINAL ARTICLE - ADULT CARDIAC

Does rich coronary collateral circulation distal to chronically occluded left anterior descending artery compete with graft flow?

Daisuke Kaku, Atsushi Nakahira*, Hidekazu Hirai, Yasuyuki Sasaki, Mitsuharu Hosono, Yasuyuki Bito, Yasuo Suehiro and Shigefumi Suehiro


- In the immediate post-op phase collateral flow may diminish graft forward flow
- At 5 years F-UP no MACE or death increase in patients with collateral flow

QOL IMPROVEMENT AFTER MVD REVASCULARIZATION

Relationship between initial treatment strategy and quality of life in patients with coronary chronic total occlusions

Harindra C. Wijeysundera^{1,2,3,4}*, MD, PhD; Colleen Norris^{5,6}, PhD; Paul Fefer^{1,7}, MD; P. Diane Galbraith⁸, BN, MSc; Merril L. Knudtson⁸, MD; Rafael Wolff¹, MD; Graham A. Wright¹, PhD; Bradley H. Strauss^{1,2}, MD, PhD; Dennis T. Ko^{1,2,3,4}, MD, MSc

- 387 patients, multicenter, prospective
- > 90% MVD, at least one CTO
- Slightly better QOL improvement with CABG vs. PCI, but both far better than OMT

	Baseline	1 year	<i>p</i> -value for change over time	<i>p</i> -value compared to medical therapy
PCI to CTO vessel	0.833 (0.766-0.899)	0.907 (0.845-0.968)	0.02	0.11
PCI to non-CTO vessel	0.837 (0.786-0.887)	0.902 (0.852-0.953)	0.006	0.12
CABG	0.787 (0.743-0.831)	0.921 (0.874-0.967)	< 0.001	< 0.001
Medical therapy	0.861 (0.818-0.903)	0.880 (0.840-0.921)	0.26	NA

Figure 1. Changes in EQ-5D.

OMT. VS. PCI. VS. CABG IN MVD CTO

Clinical outcomes of multiple shronic total occlusions in coronary arteries according to three therapeutic strategies: Bypass surgery, percutaneous intervention and medication

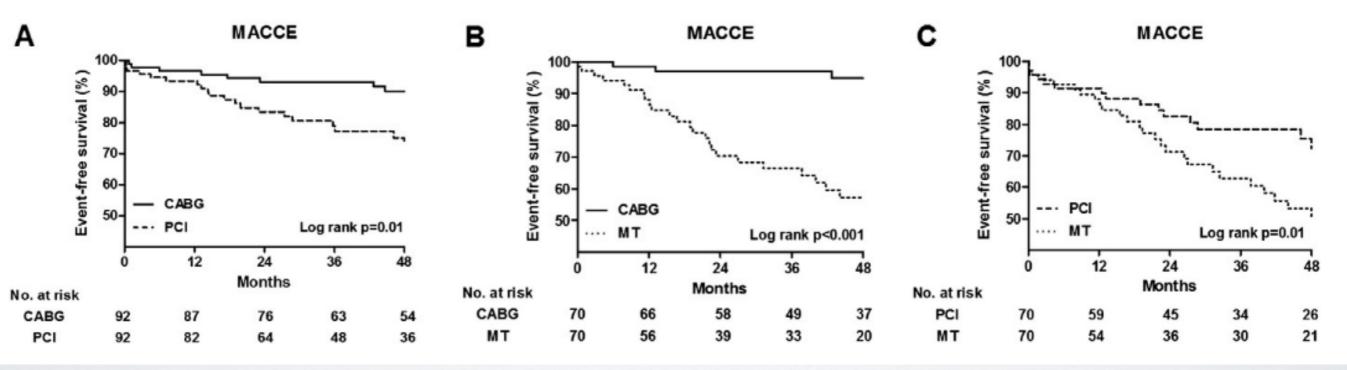
Bum Sung Kim ^{a,b,1}, Jeong Hoon Yang ^{a,1}, Woo Jin Jang ^{a,c}, Young Bin Song ^a, Joo-Yong Hahn ^a, Jin-Ho Choi ^a, Wook Sung Kim ^d, Young Tak Lee ^d, Hyeon-Cheol Gwon ^a, Sang Hoon Lee ^a, Seung-Hyuk Choi ^{a,*}

Retrospective single
 center, 393 patients with
 I CTO

• 2003-2012

International Journal of Cardiology 197 (2015) 2–7

Baseline and angiographic characteristics in pre-matching populations of each group.


	CABG	PCI	MT	Overall
	(n = 169)	(n = 130)	(n = 94)	P-value
Age (years)	61.1 ± 9.6	62.0 ± 11.1	67.6 ± 12.6	< 0.01
Male	147 (87.0)	113 (86.9)	75 (79.8)	0.22
Hypertension	105 (62.1)	84 (64.6)	61 (64.9)	0.87
Diabetes	101 (59.8)	57 (43.8)	55 (58.5)	0.02
Presentation of ACS	41 (24.3)	34 (26.2)	13 (13.8)	0.05
Renal insufficiency	6 (3.6)	20 (15.4)	9 (9.6)	< 0.01
Dyslipidemia	56 (33.1)	41 (31.5)	21 (22.3)	C17
Prior myocardial infarction	46 (27.2)	34 (26.2)	41 (43.6)	< 0.01
Prior coronary intervention	28 (16.6)	29 (22.3)	26 (27.7)	0.10
Cerebrovascular disease	15 (8.9)	12 (9.2)	13 (13.8)	0.40
Current smoking	63 (37.3)	50 (38.5)	33 (35.1)	0.00
LVEF < 40%	52 (30.8)	22 (16.9)	30 (31.9)	0.01
Logistic EuroSCORE	4.3	4.4	5.2	0.11
	(2.6-8.2)	(2.6-8.5)	(2.7-10.7)	
CTO lesion				
LAD	99 (58.6)	72 (55.4)	52 (55.3)	0.81
LCX	126 (74.6)	97 (74.6)	66 (70.2)	0.70
RCA	136 (80.5)	95 (73.1)	78 (83.0)	0.15
Proximal or mid	153 (90.5)	107 (82.3)	81 (86.2)	0.11
Blunt stump	78 (46.2)	49 (37.7)	50 (53.2)	0.07
Calcification	44 (26.0)	25 (19.2)	25 (26.6)	0.30
High collateral flow	127 (75.1)	97 (74.6)	70 (74.5)	0.00
SYNTAX score	34.6 ± 10.4	26.9 ± 8.8	29.1 ± 10.2	< 0.01

OMT. VS. PCI. VS. CABG IN MVD CTO

Clinical outcomes of multiple chronic total occlusions in coronary arteries according to three therapeutic strategies: Bypass surgery, percutaneous intervention and medication

Bum Sung Kim ^{a,b,1}, Jeong Hoon Yang ^{a,1}, Woo Jin Jang ^{a,c}, Young Bin Song ^a, Joo-Yong Hahn ^a, Jin-Ho Choi ^a, Wook Sung Kim ^d, Young Tak Lee ^d, Hyeon-Cheol Gwon ^a, Sang Hoon Lee ^a, Seung-Hyuk Choi ^{a,*}

 After matching, CABG better in mortality than MT and better in MACCE than PCI at 48 months due to

CTO PCIVS. CABG IN CTO - 2008-2012

Second-generation drug-eluting stenting versus coronary artery bypass grafting for treatment of coronary chronic total occlusion

Woo Jin Jang (MD, PhD)^{a,1}, Jeong Hoon Yang (MD, PhD)^{b,1}, Young Bin Song (MD, PhD)^b, Joo-Yong Hahn (MD, PhD)^b, Woo Jung Chun (MD, PhD)^a, Ju Hyeon Oh (MD, PhD)^a, Wook Sung Kim (MD, PhD)^c, Young Tak Lee (MD, PhD)^c, Cheol Woong Yu (MD, PhD)^d, Hyun Jong Lee (MD)^e, Hyeon-Cheol Gwon (MD, PhD)^b, Seung-Hyuk Choi (MD, PhD)^{b,*}

- Retrospective non randomized study, 423 patients
- 232 patients 2nd gen DES vs. 191 CABG patients
- 80.1% of CTO-PCI were successfully revascularized
- 92.1% of CTO-CABG were successfully revascularized
- Total arterial graft was performed in 75.3%

<u>J Cardiol.</u> 2019 Jan 2. pii: S0914-5087(18)30351-4.

CTO PCIVS. CABG IN CTO - 2008-2012

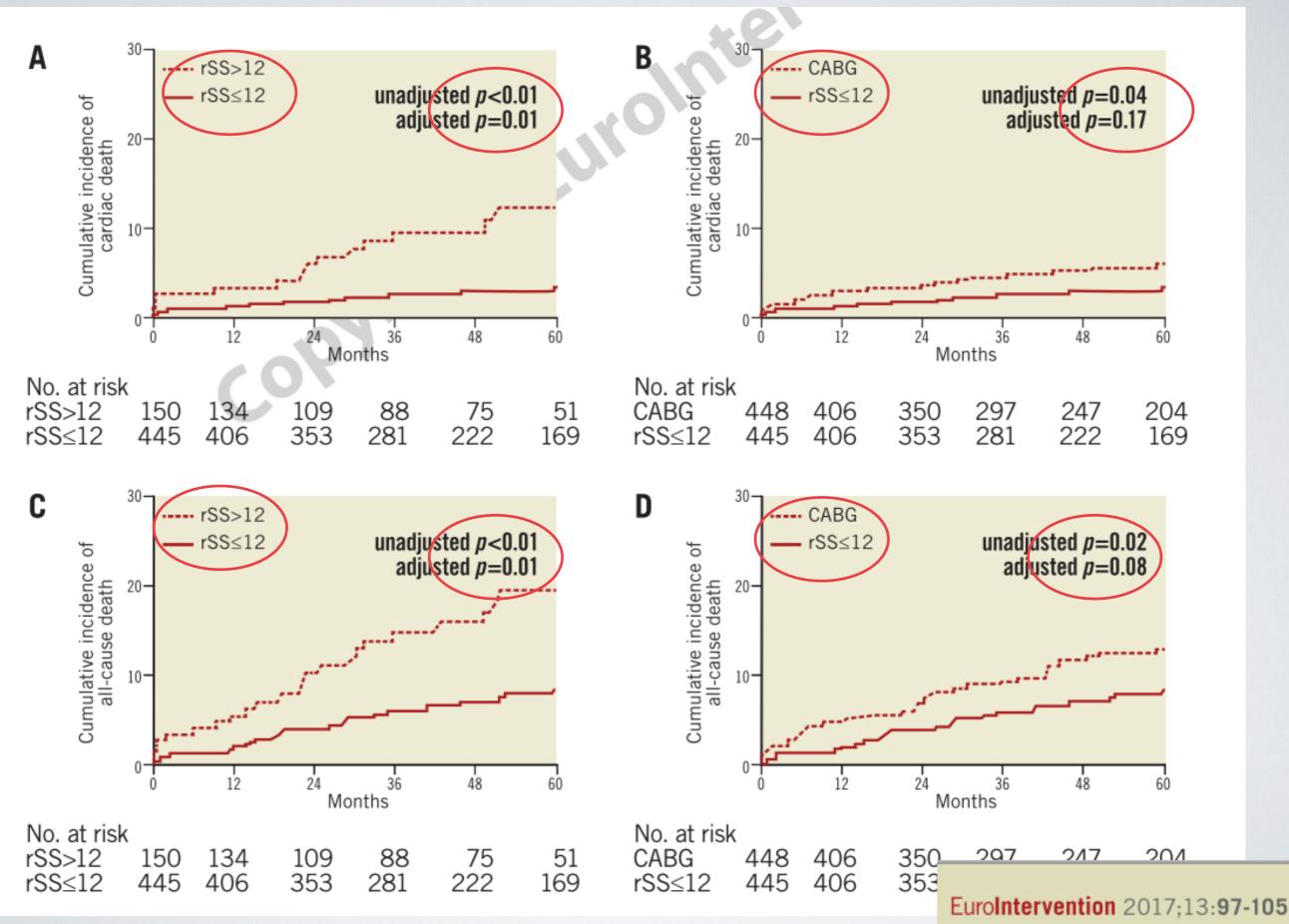
	Overall population	2nd DES group	CABG group	p-Value
	n = 423	n=232	n = 191	F
Age (years)	63.0 ± 10.6	63.1 ± 11.1	62.9 ± 9.9	0.821
Male	346 (81.8)	186 (80.2)	160 (83.8)	0.240
Diabetes mellitus	209 (49.4)	97 (41.8)	112 (58.6)	0.001
Hypertension	273 (64.5)	151 (65.1)	122 (63.9)	[]s
Dyslipidemia	188 (44.4)	118 (50.9)	70 (36.6)	0.003
Current smoker	134 (31.7)	77 (33.2)	57 (29.8)	0.402
Chronic renal failure	33 (7.8)	16 (6.9)	17 (8.9)	0.444
Acute coronary syndrome	116 (27.4)	82 (35.3)	34 (17.8)	< 0.001
Previous MI	64 (15.1)	33 (14.2)	31 (16.2)	0.507
Previous CVA	30 (7.1)	15 (6.5)	15 (7.9)	0.580
Previous PCI	73 (17.3)	43 (18.5)	30 (15.7)	0.444
LVEF (%)	54.4 ± 13.8	56.5 ± 13.1	52.0 ± 14.3	0.001
Concomitant medications				
Aspirin	394 (93.1)	222 (95.7)	172 (90.1)	0.022
Statins	334 (79.0)	185 (79.7)	149 (78.0)	0.664
Beta blockers	285 (67.4)	141 (60.8)	14 (75.4)	0.001
ACE inhibitor/ARBs	175 (41.4)	140 (60.3)	35 (18.3)	< 0.001
	Overall population	2nd DES group	CABG group	<i>p</i> -Value
	n = 423	n=232	n = 191	
CTO location				
Right coronary artery	214 (50.6)	96 (41.4)	118 (<mark>61.8</mark>)	< 0.001
Left main artery	0 (0)	0 (0)	0 (0)	
Left anterior descending artery	160 (37.8)	92 (39.7)	68 (35.6)	0.392
Left circumflex artery	160 (37.8)	77 (33.2)	83 (43.5)	0.030
Multiple CTOs	120 (28.4)	50 (21.6)	70 (36.6)	0.001
Abrupt stump	155 (36.6)	67 (28.9)	88 (46.1)	<0.001
Bridge collaterals	141 (33.3)	56 (24.1)	85 (44.5)	< 0.001
Calcified CTO	83 (19.6)	28 (12.1)	55 (28.8)	< 0.001
^a Proximal to mid CTO	308 (72.8)	169 (72.8)	139 (72.8)	0.987
^b Well-developed collateral	157 (44.4)	75 (46.0)	82 (42.9)	0.561
SYNTAX score	26.3 ± 10.8	22.2 ± 9.5	29.8 ± 10.6	< 0.001
SYNTAX score ≥24	197 (55.6)	66 (40.5)	131 (68.6)	< 0.001

Non homogeneous groups

<u>J Cardiol.</u> 2019 Jan 2. pii: S0914-5087(18)30351-4.

CTO PCIVS. CABG IN CTO - 2008-2012

•				-			
	Overall population $n = 423$	2nd DES group n=232	CABG group n = 191	^a Adjusted HR (95% CI)	p-Value	HR after IPTW (95% CI)	p-Value
Death or MI	21 (5.0)	8 (3.4)	13 (6.8)	0.69 (0.29-1.63)	0.399	0.72 (0.26-1.95)	0.518
Death	19 (4.5)	6 (2.6)	13 (6.8)	0.52 (0.20-1.31)	0.165	0.54 (0.18-1.63)	0.278
Cardiac death	8 (1.9)	2 (0.9)	6 (3.1)	0.45 (0.11-1.81)	0.259	0.39 (0.07-2.15)	0.281
MI	4 (0.9)	3 (1.3)	1 (0.5)	4.28 (0.46-39.74)	0.202	2.94 (0.22-39.85)	0.418
CVA	13 (3.1)	3 (1.3)	10 (5.2)	0.31 (0.08-1.13)	0.077	0.60 (0.15-2.44)	0.477
Repeat revascularization	21 (5.0)	20 (8.6)	1 (0.5)	19.56 (2.59-147.82)	0.004	28.66 (3.50-235.06)	0.002
^b MACCE	49 (11.6)	28 (12.1)	21 (11.0)	1.32 (0.74-2.35)	0.341	1.49 (0.76-2.91)	0.244


- Mortality similar in this sample
- RR differs at 32 months

RESIDUAL SYNTAX SCORE IN MVD CTO

Clinical implications of residual SYNTAX score after percutaneous coronary intervention in patients with chronic total occlusion and multivessel coronary artery disease: a comparison with coronary artery bypass grafting

- Retrospective non randomized study in MVD and CTO, 1043 patients (595 PCI, 448 CABG)
- Compared long term results in CTO-PCI with residual SS <12, > 12 and patients treated with state of the art CABG.

		r\$\$≤12* n=445	rSS>12* n=150	CABG* n=448	<i>p</i> -value rSS≤12 vs. rSS>12	rSS≤12 vs. CABG
Age, years		62.0±10.6	63.6±10.3	62.9±9.2	0.09	0.17
Male		362 (81.3)	120 (80.0)	373 (83.3)	0.72	0.45
Diabetes mellitus		203 (45.6)	74 (49.3)	266 (59.4)	0.43	<0.01
Hypertension		293 (65.8)	103 (68.7)	287 (64.1)	0.53	0.58
Dyslipidaemia		160 (36.0)	39 (26.0)	163 (36.4)	0.03	0.89
Chronic renal failu	re	31 (7.0)	17 (11.3)	28 (6.2)	0.09	0.67
Acute coronary syn	idrome	112 (25.2)	38 (25.3)	100 (22.3)	0.97	0.32
Current smoker		141 (31.7)	50 (33.3)	143 (31.9)	0.71	0.94
Previous MI		75 (16.9)	39 (26.0)	103 (23.0)	0.01	0.02
Previous CVA		37 (8.3)	13 (8.7)	40 (8.9)	0.89	0.74
Previous PCI		76 (17.1)	34 (22.7)	72 (16.1)	0.13	0.67
LVEF (%)		58.0±12.0	56.3±14.0	52.8±13.9	0.21	<0.01
CTO location	RCA	192 (43.1)	89 (59.3)	285 (63.6)	<0.01	<0.01
	LAD	167 (37.5)	64 (42.7)	183 (40.8)	0.26	0.31
	LCx	169 (38.0)	48 (32.0)	172 (38.4)	0.19	0.90
	LMCA	0 (0)	0 (0)	0 (0)		
Multiple CTOs		82 (18.4)	48 (32.0)	169 (37.7)	<0.01	<0.01
Abrupt stump		171 (38.4)	67 (44.7)	199 (44.4)	0.18	0.07
Bridge collaterals		138 (31.0)	50 (33.3)	195 (43.5)	0.60	<0.01
Calcified CTO		68 (15.3)	36 (24.0)	110 (24.6)	0.02	<0.01
Proximal-to-mid C	ΓΟ**	307 (69.0)	117 (78.0)	353 (78.8)	0.04	<0.01
Well-developed col	lateral***	170 (38.2)	54 (36.0)	157 (35.0)	0.63	0.33
Baseline SYNTAX s	score	20.6±8.5	26.1±7.8	30.3±10.3	<0.01	<0.01
Concomitant	Aspirin	414 (93.0)	137 (91.3)	402 (89.7)	0.49	0.08
medications	Clopidogrel	424 (95.3)	121 (80.7)	139 (31.0)	<0.01	<0.01
	Statins	328 (73.7)	105 (70.0)	368 (82.1)	0.38	<0.01
	Beta-blockers	255 (57.3)	95 (63.3)	307 (68.5)	0.19	<0.01

n=445	CR-PCI [¶] n=161	reasonable iCR-PCI [¶] n=284	Unadjusted HR (95% CI)	<i>p</i> -value	Adjusted* HR (95% CI)	<i>p</i> -value
Cardiac death	3 (1.9)	11 (3.9)	0.49 (0.14-1.75)	0.27	0.48 (0.13-1.72)	0.26
All-cause death	11 (6.8)	22 (7.7)	0.90 (0.43-1.85)	0.77	0.89 (0.43-1.84)	0.75
MI	3 (1.9)	3 (1.1)	1.81 (0.36-8.95)	0.47	1.82 (0.36-9.15)	0.47
CVA	2 (1.2)	3 (1.1)	1.18 (0.20-7.06)	0.86	1.44 (0.23-8.95)	0.70
Repeat revascularisation	21 (13.0)	35 (12.3)	1.05 (0.61-1.80)	0.86	1.09 (0.63-1.88)	0.76
MACCE	30 (18.6)	58 (20.4)	0.91 (0.58-1.41)	0.67	0.93 (0.60-1.45)	0.76
n=609	CR-PCI ¹ n=161	CABG n=448	Unadjusted HR (95% CI)	<i>p</i> -value	Adjusted** HR (95% CI)	<i>p</i> -value
Cardiac death	3 (1.9)	29 (6.5)	0.31 (0.09-1.00)	0.05	0.37 (0.11-1.24)	0.11
All-cause death	11 (6.8)	59 (13.2)	0.56 (0.29-1.06)	0.08	0.62 (0.32-1.20)	0.16
MI	3 (1.9)	2 (0.4)	4.31 (0.72-25.80)	0.11	5.17 (0.80-33.38)	0.09
CVA	2 (1.2)	18 (4.0)	0.33 (0.08-1.44)	0.14	0.43 (0.10-1.86)	0.26
Repeat revascularisation	21 (13.0)	4 (0.9)	16.89 (5.78-49.31)	< 0.01	14.51 (4.90-42.99)	<0.01
MACCE	30 (18.6)	86 (19.2)	1.13 (0.74-1.71)	0.57	1.21 (0.79-1.85)	0.38
n=732	reasonable iCR-PCI*	CABG n=448	Unadjusted HR (95% CI)	<i>p</i> -value	Adjusted*** HR (95% CI)	<i>p</i> -value
Cardiac death	11 (3.9)	29 (6.5)	0.63 (0.32-1.27)	0.20	0.76 (0.37-1.55)	0.45
All-cause death	22 (7.7)	59 (13.2)	0.63 (0.39-1.03)	0.06	0.71 (0.43-1.18)	0.18
MI	3 (1.1)	2 (0.4)	2.50 (0.42-14.99)	0.32	3.68 (0.57-23.90)	0.17
CVA	3 (1.1)	18 (4.0)	0.27 (0.08-0.93)	0.04	0.33 (0.09-1.16)	0.08
Repeat revascularisation	35 (12.3)	4 (0.9)	16.42 (5.83-46.26)	< 0.01	18.21 (6.32-52.48)	<0.01
MACCE	58 (20.4)	86 (19.2)	1.26 (0.90-1.75)	0.18	1.41 (1.01-2.00)	0.06

Clinical implications of residual SYNTAX score after percutaneous coronary intervention in patients with chronic total occlusion and multivessel coronary artery disease: a comparison with coronary artery bypass grafting

- CABG more sick patients, higher baseline SS
- Mortality in residual SS<12 similar to CABG
- Repeat revascularization higher (13% vs. 1%) in residual
 Syntax Score 0-12
- Unfortunately, no TTF measurements and no "residual SS in CABG" patients reported

LIKELY TECHNIQUE OF CTO PCI

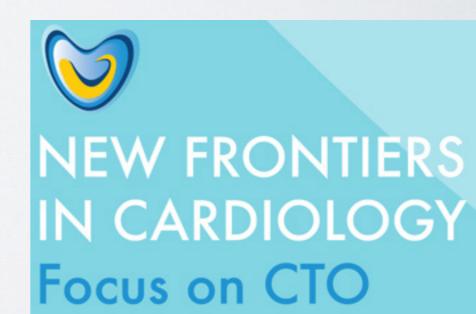
- Avoid probable retrograde technique or other complex crossing techniques?
- Avoid in very high SS-CTO or J—CTO scores?
- Avoid in long(>20 mm) CTO's?
- Avoid in patients with residual SS > 12? And < 12?

CONCLUSIONS

- "Broadly speaking, the treatment of CTOs may be considered analogous to the treatment of non-CTO lesions."
- Some anatomical and clinical caracteristics, as well as patient preference, may help decision making in treating MVD with CTO
- Age and gender also influence success of both revascularization strategies and should be considered
- CTO PCI in MVD is feasible but is it advisable in all? What is the expected residual SS and crossing technique?

ROLE OF CABG IN MVD CTO

- CABG has very little technical modifications if the patient has MVD CTO
- Evidence is favorable to CABG even in sicker patients, mainly due to diminished RR


CONCLUSIONS

- Repeat revascularization continues to be a problem in all PCI (and reabsorbable stents are not the solution we hoped they would be)
- More complex MVD CTO patients should continue to undergo state of the art CABG
- In the absence of robust evidence, MVD with CTO should continue to be treated with CABG if no other contraindications exist.

Thank you

