Can we switch to radial access in most CTO cases?

Pierfrancesco Agostoni MD, PhD

Hartcentrum, Ziekenhuis Netwerk Antwerpen (ZNA) Middelheim, Antwerp, Belgium

Early days of trans-radial adoption...

Radial Versus Femoral Approach for Percutaneous Coronary Diagnostic and Interventional Procedures

Systematic Overview and Meta-Analysis of Randomized Trials

Comparison: Outcome:	Radial vs Femoral approach MACE				
Study	Radial	Femoral	OR (random)	OR (random)	
or sub-category	n/N	n/N	95% CI	95% CI	Year
Grinfeld	0/138	2/141		0.20 [0.01, 4.23]	1996
Mann 1996	1/76	0/76		3.04 [0.12, 75.80]	1996
ACCESS	20/300	16/300	- }= -	1.27 [0.64, 2.50]	1997
BRAFE Stent	3/56	2/56		1.53 [0.25, 9.52]	1997
Mann 1998	0/74	0/68		Not estimable	1998
Cooper	0/101	1/99		0.32 [0.01, 8.04]	1999
Monségu	0/196	0/183		Not estimable	2000
CARAFE	0/140	0/70		Not estimable	2001
Gorge	0/214	0/216		Not estimable	2001
Moriyama	0/108	1/92		0.28 [0.01, 6.98]	2002
OCTOPLUS	5/188	8/183		0.60 [0.19, 1.86]	2003
TEMPURA	6/77	8/72		0.68 [0.22, 2.05]	2003
Total (95% CI)	1668	1556	•	0.92 [0.57, 1.48]	
	Radial), 38 (Femoral)		Ĩ	•	
	neity: Chi² = 4.43, df = 7 (P = 0.73)				
Test for overall ef	ffect: Z = 0.34 (P = 0.73)				
		0.004	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4000	
		0.001	I 0.01 0.1 1 10 100	1000	
			Favours radial Favours femora	il	

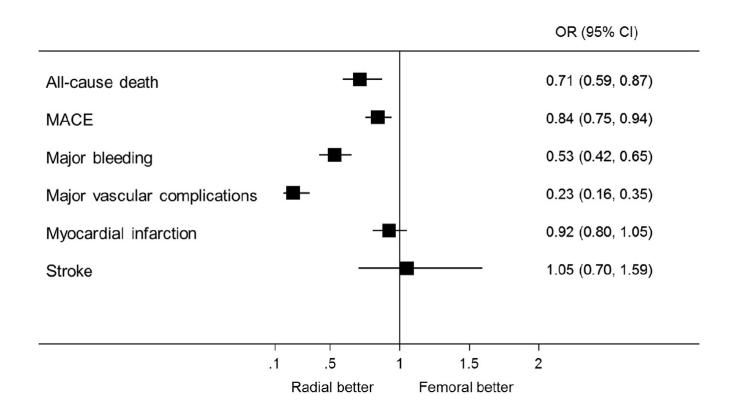
Early days of trans-radial adoption...

Radial Versus Femoral Approach for Percutaneous Coronary Diagnostic and Interventional Procedures

Systematic Overview and Meta-Analysis of Randomized Trials

Study	Radial	Femoral	OR (random)	OR (random)	
or sub-category	n/N	n/N	95% CI	95% CI	Year
Grinfeld	0/138	3/141		0.14 [0.01, 2.79]	1996
Mann 1996	0/76	4/76		0.11 [0.01, 1.99]	1996
ACCESS	0/300	6/300		0.08 [0.00, 1.34]	1997
BRAFE Stent	1/56	3/56		0.32 [0.03, 3.19]	1997
Mann 1998	0/74	3/68		0.13 [0.01, 2.48]	1998
Cooper	0/101	0/99		Not estimable	1999
CARAFE	0/140	2/70		0.10 [0.00, 2.06]	2003
Gorge	1/214	1/216		1.01 [0.06, 16.24]	2003
Moriyama	0/108	3/92		0.12 [0.01, 2.31]	2002
OCTOPLUS	3/188	12/183		0.23 [0.06, 0.83]	2003
TEMPURA	0/77	2/72		0.18 [0.01, 3.85]	2003
Total (95% CI)	1472	1373	•	0.20 [0.09, 0.42]	
Total events: 5 (Radial), 39 (Femoral)			-	·	
Test for heterogeneity: Chi2 = 2.66, df	= 9 (P = 0.98)				
Test for overall effect: Z = 4.20 (P < 0.					

What the Holy Texts say... in 2018


 Current indications in vascular access for percutaneous coronary interventions

Recommendations on choice of stent and access site

Recommendations	Class ^a	Level ^b
DES are recommended over BMS for any PCI irrespective of: clinical presentation lesion type planned non-cardiac surgery anticipated duration of DAPT concomitant anticoagulant therapy. 100,578,579,640	I	A
Radial access is recommended as the standard approach, unless there are overriding procedural considerations. 172,638,641	ı	A
BRS are currently not recommended for clinical use outside of clinical studies. ^{642–650}	III	С

Radial Versus Femoral Access for Coronary Interventions Across the Entire Spectrum of Patients With Coronary Artery Disease

A Meta-Analysis of Randomized Trials

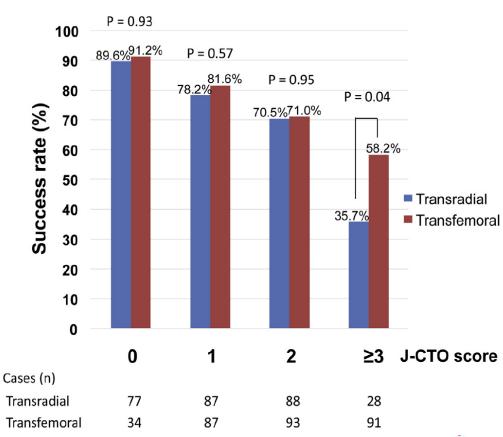
Radial Versus Femoral Access for Coronary Interventions Across the Entire Spectrum of Patients With Coronary Artery Disease

A Meta-Analysis of Randomized Trials

	Stable		NSTE ACS		STEMI		p Value for Interaction		
	(n = 3,096)	p Value	(n = 9,876)	p Value	(n = 9,871)	p Value	STEMI vs. Stable	STEMI vs. NSTE ACS	NSTE ACS
All-cause death	0.78 (0.29-2.14)	0.63	0.79 (0.27-2.34)	0.67	0.66 (0.52-0.83)	0.001	0.76	0.76	0.97
Major bleeding	0.24 (0.11-0.52)	< 0.001	0.71 (0.48-1.04)	0.08	0.51 (0.52-0.83)	< 0.001	0.06	0.15	0.01
MACE	0.72 (0.43-1.19)	0.20	0.95 (0.66-1.38)	0.79	0.80 (0.67-0.96)	0.015	0.68	0.39	0.35
			ACS				p V	/alue for interaction	
MI	1.04 (0.69-1.55)	0.85	0.90 (0.78-1.04)	0.17				0.51	
Stroke	0.32 (0.01-7.89)	0.49	1.08 (0.71-1.63)	0.72				0.48	
Major vascular	0.15 (0.06-0.37)	<0.001	0.26 (0.17-0.41)	< 0.001				0.29	
			NSTE ACS				•	/alue for interaction STE ACS vs. STEMI)	
NACE	NA		0.91 (0.70-1.17)	0.46	0.64 (0.48-0.84)	0.001		0.06	

Why is it difficult to implement trans-radial approach in the settings of CTO?

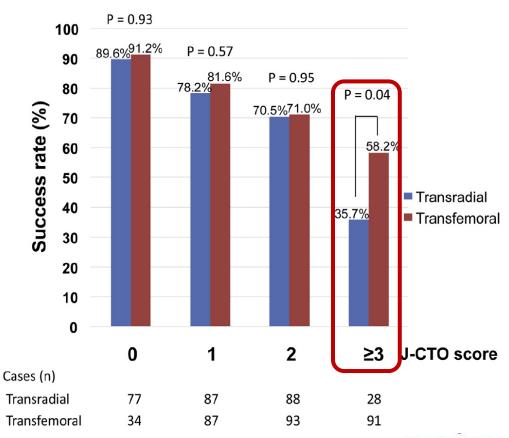
- Need for enhanced support
- Larger French size catheters to accommodate additional materials
- Operator comfort
- "Old school" indications
- First experiences and reports...



Transradial Coronary Interventions for Complex Chronic Total Occlusions

Yutaka Tanaka, MD, PhD, Noriaki Moriyama, MD, Tomoki Ochiai, MD, Takuma Takada, MD, Kazuki Tobita, MD, Koki Shishido, MD, Kazuya Sugitatsu, MD, Futoshi Yamanaka, MD, Shingo Mizuno, MD, Masato Murakami, MD, PhD, Junya Matsumi, MD, Saeko Takahashi, MD, Takeshi Akasaka, MD, PhD, Shigeru Saito, MD

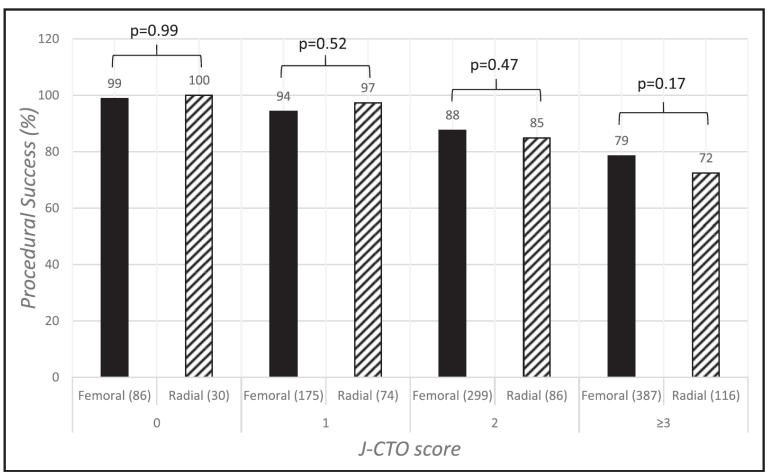
- Analysis of 585 pts undergoing CTO procedures
- All complexity scenarios included – Real Life environment
- Propensity-score matching to reduce bias in the analysis
- Transfemoral approach should be preferred for complex lesions (especially when calcifications are present)



Transradial Coronary Interventions for Complex Chronic Total Occlusions

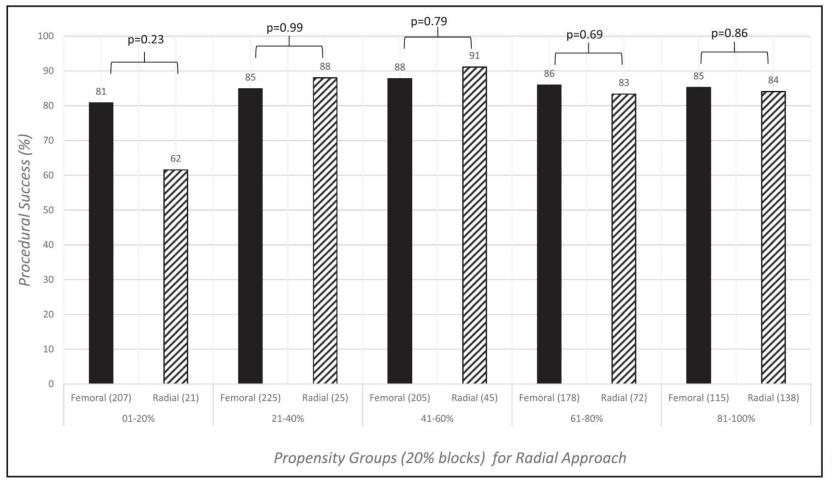
Yutaka Tanaka, MD, PhD, Noriaki Moriyama, MD, Tomoki Ochiai, MD, Takuma Takada, MD, Kazuki Tobita, MD, Koki Shishido, MD, Kazuya Sugitatsu, MD, Futoshi Yamanaka, MD, Shingo Mizuno, MD, Masato Murakami, MD, PhD, Junya Matsumi, MD, Saeko Takahashi, MD, Takeshi Akasaka, MD, PhD, Shigeru Saito, MD

- Single centre study
- Retrospective analysis over a 10 years period (2005-2014)
- No data on operators number or dedication to trans-radial procedures
- No data about use of microcatheters/guide extensions



Fully Transradial Versus Transfemoral Approach for Percutaneous Intervention of Coronary Chronic Total Occlusions Applying the Hybrid Algorithm Insights From RECHARGE Registry

- Multicenter registry in Europe
- Operators experienced with Hybrid Algorithm
- 1253 CTO-PCI all techniques included
- Patients were divided according to fully-transradial approach procedures and transfemoral approach (including transradial+transfemoral)
- Propensity score analsysi and matching
- Primary endpoint: technical success
- All procedural data available



Fully Transradial Versus Transfemoral Approach for Percutaneous Intervention of Coronary Chronic Total Occlusions Applying the Hybrid Algorithm Insights From RECHARGE Registry

Fully Transradial Versus Transfemoral Approach for Percutaneous Intervention of Coronary Chronic Total Occlusions Applying the Hybrid Algorithm

Insights From RECHARGE Registry

Procedural Outcomes of Percutaneous Coronary Interventions for Chronic Total Occlusions via the Radial Approach: Insight from an International CTO Registry.

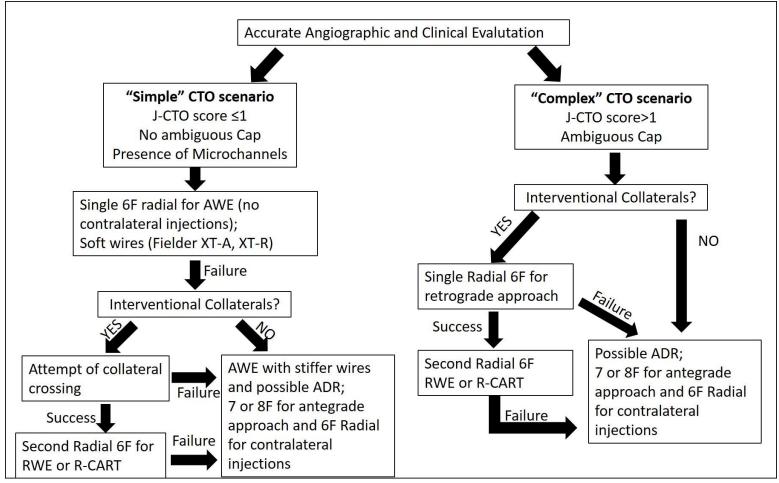
- Large multicentre registry in US/Europe/Russia (3790 CTO PCIs)
 - Increased adoption of trans-radial approach between 2012 (11%) and 2018 (67%).
 - Similar success rates if compared with trans-femoral (89% vs 86%, p=.06)
 - Similar cardiac complication rates (2.5% vs 3.4%)
 - Lower major bleeding complication rates (0.55% vs 1.94%)

Procedural Outcomes of Percutaneous Coronary Interventions for Chronic Total Occlusions via the Radial Approach: Insight from an International CTO Registry.

Variable	Overall	Radial-only	Radial-femoral	Femoral-only	P values	Adjusted	
variable	(n=3709)	(n=728)	(n=824)	(n=2157)	- P values	p value ‡	
In-hospital MACE	2.51%	2.47%	3.40%	2.18%	0.163	0.830	
• Death	0.51%	0.27%	0.97%	0.42%	0.101	-	
Acute MI	0.92%	0.82%	0.97%	0.93%	0.952	-	
Re-PCI	0.30%	0.41%	0.49%	0.19%	0.329	-	
• Stroke	0.24%	0.14%	0.49%	0.19%	0.268	-	
• Emergency CABG	0.13%	0.14%	0.12%	0.14%	0.993	-	
• Pericardiocentesis	0.84%	1.24%	0.97%	0.65%	0.287	-	
Perforation	4.37%	4.53%	3.52%	4.64%	0.399	0.260	
Vascular access complication	1.59%	0.55%	1.70%	1.90%	0.040	0.130	
Bleeding	1.05%	0.55%	1.94%	0.88%	0.013	0.040	

[‡] Analysis of deviance p-value adjusted for intra-center dependency.

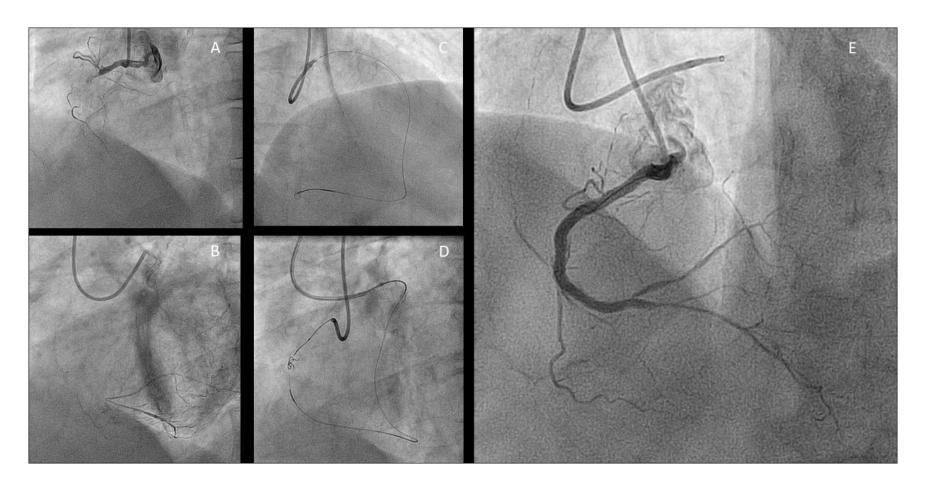
Procedural Outcomes of Percutaneous Coronary Interventions for Chronic Total Occlusions via the Radial Approach: Insight from an International CTO Registry.



Alternative Hybrid Approach for advanced CTO operators

Objective:

- Increase adoption of trans-wrist approach
- Reduce the use of dual-catheter injection as a first strategy
- Limiting access-related complications
- Improve patients' confort



	Minimalistic Approach(n=91)	Conventional Approach (n=9)		
Procedural Success	81(89%)	8(88.9%)		
	Access site			
Single Femoral	0	3(33.3%)		
Radial and Femoral	8(8.8%)	6(66.7%)		
Single Radial	50(54.9%)	0		
Bi-radial	26(28.6%)	0		
Single Ulnar	3(3.3%)	0		
Bi-Ulnar	1(1.1%)	0		
Radial and Ulnar	3(3.3%)	0		
	Catheter Size			
Antegrade 6F	79(86.8%)	5(55.6%)		
Antegrade 7F	4(4.4%)	0		
Antegrade 8F	8(8.8%)	4(44.4%)		
Retrograde 6F	39(42.8%)	6(66.6%)		
Succe	ssful technical approach for CTO o	crossing		
AWE	52(64.2%)	1(12.5%)		
ADR	5(6.2%)	1(12.5%)		
RWE	3(3.7%)	1(12.5%)		
R-CART	21(25.9%)	5(62.5%)		

		Minimalistic Approach (n=91)	Conventional Approach (n=9)	
Proce	edural Success	81(89%)	8(88.9%)	
J-CTO				
	0	10/10 (100%)	0	
	1	30/30 (100%)	2/2 (100%)	
	2	17/20 (85%)	3/3 (100%)	
	3 or more	24/31 (77.4%)	3/4 (75%)	



First prospective multicenter experience with left distal transradial approach for coronary chronic total occlusion interventions using a 7-french glidesheath slender.

- 41 consecutive pts undergoing CTO-PCI in experienced centres
- LdTRA access successful in 34 (82.9%). Reasons for failure: weak pulsation (3 pts) or excessive tortuosity (4 pts)
- Second access:
 - femoral 70%
 - radial/ulnar 30%
- Mean J-CTO score 2.19±1.27
- Technical CTO success 90%

LETTER TO THE EDITOR

Suggesting a New Primary Access Site for Treating Chronic Total Occlusions: Bilateral Distal Transradial Intervention (bdTRI)

Irzal Hadžibegović, MD, PhD and Boris Starčević, MD, PhD

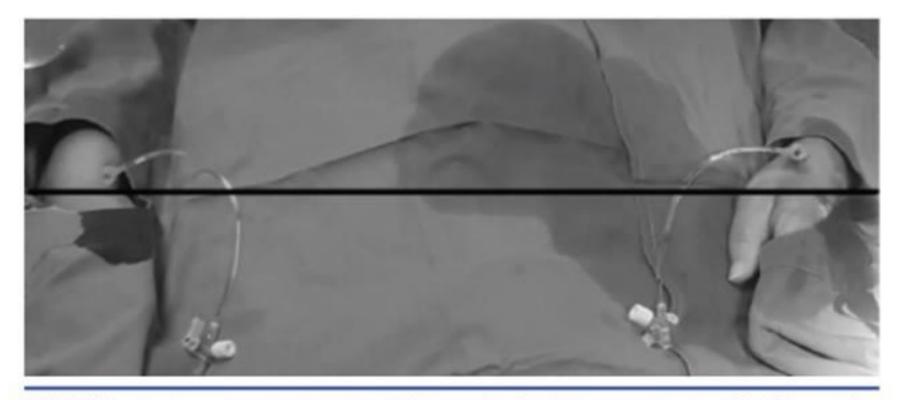
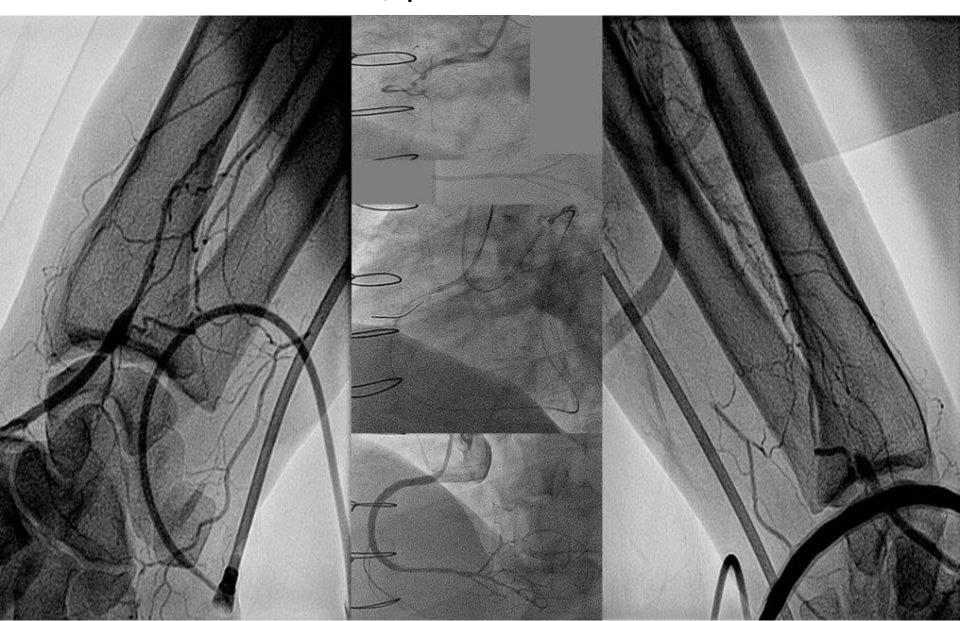



FIGURE 1. A female patient at our center who underwent CTO intervention of the right coronary artery that utilized 7 Fr hydrophilic sheaths in both radial arteries. The right radial artery was punctured in a classic fashion, with both sheaths almost aligned and a comfortable left hand position, not so distant from the operator standing on the right patient side.

Ulnar approach can also be considred in case of radial failure / previous occlusion

Ulnar approach can also be considred in case of radial failure / previous occlusion

Trans-Wrist Intervention: TWI instead of TRI

Distal radial left- distal radial right

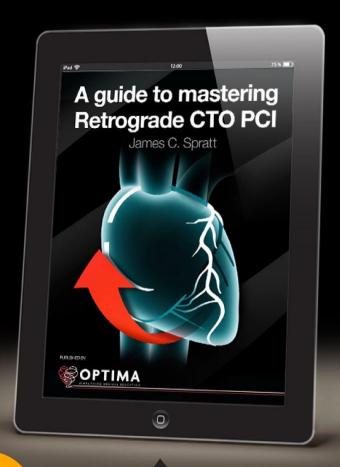
Radial left – radial right

Ulnar left – ulnar right

6 WRIST ACCESSES!

Femoral left – femoral right


2 GROIN ACCESSES!


Conclusions

- The overall number of CTO-PCIs is constantly growing, and as in other settings, the routine adoption of TRA has the potential to reduce complications and eventually save lives
- Implementation of trans-radial (or trans-wrist) access in CTO-PCI is a phenomenon already taking place
- Recent evidence suggests that also complex CTO lesions can be approached transradially with high success rates
- Issues concerning lack of support can be solved with proper technical strategies (oversized guiding catheter curves for LCA, more supportive guiding catheters for RCA, GuideExtension adoption...)
- With new sheaths (but also with conventional sheaths) 7F radial is possible in the majority of patients
- When radial artery is not adequate... don't forget the Ulnar!

Available Now!

Order from Apple iBook Store Search 'retrograde guide'

EXTRA SLIDES

	Minimalistic Approach(n=91)	Conventional Approach (n=9)
Culprit vessel		
RCA	52(57.1%)	6(66.7%)
LAD	28(30.8%)	1(11.1%)
LCX	11(12.1%)	2(22.2%)
J-CTO score		
Easy	10(11%)	0
Intermediate	30(33%)	2(22.2%)
Difficult	20(22%)	3(33.3%)
Very difficult	31(34%)	4(44.4%)
Mean±SD	1.9±1.2	2.3±1
J-CTO score components		
Blunt Stump	24(26.4%)	3(33.3%)
Calcium	56(61.5%)	5(55.6%)
Bending	48(52.7%)	5(55.6%)
Length>20 mm	37(40.7%)	5(55.6%)
Re-try lesion	7(7.7%)	3(33.3%)
PROGRESS CTO score	0.9±0.9	1.2±0.7
Ambiguous Cap	22(24.2%)	5(55.6%)
LCX vessel	11(12.1%)	2(22.2%)
Absence of interventional collaterals	26(28.9%)	1(11.1%)
Proximal tortuosity	28(30.8%)	2(22.2%)

	Patien t Numb er	Culprit Vessel	Vascular Access	Techniques Attempted	Techniques not attempted	J-CTO score	Other Details	Reasons for Interruption
	1	LAD	Radial (6F)	Retrograde- AWE	ADR	2	Ipsilateral septo- septal collaterals only	Retrograde channel crossing failed with septal perforation. Failed antegrade lesion crossing.
ures	2	RCA	Radial (6F)	AWE	ADR- Retrograde	3	Trans-septal retrograde channels	When attempting retrograde approach through trans-septals, evidence of LAD occlusion, not disclosed during baseline CAG performed in other hospital. Patient was further evaluated by the heart-team and surgical revascularization was indicated.
ter Proced	3	ОМ	Radial (6F)	AWE-ADR	-	2	No retrograde channels	Failed distal re-entry after subintimal lesion crossing. Attempt interrupted in reason of the small territory downstream the occlusion.
Single Catheter Procedures	4	OM	Radial (6F)	AWE- Retrograde	ADR	2	Ipsilateral diagonal- OM collaterals only	Failed distal re-entry after antegrade approach; retrograde channels crossed but failed distal cap penetration; attempt interrupted in consideration of the small occluded vessel.
is	5	Diagonal	Ulnar (7F)	Retrograde	AWE-ADR	3	Ipsilateral LAD- diagonal collaterals only;	Successful retrograde crossing and predilation (LAD was previously stented at level of diagonal origin). However, the stent could not cross the lesion; procedure interrupted after dissection of the LAD with need for stent implantation and therefore additional sealing of the diagonal origin.
	1	RCA	Double- Radial (6F)	Retrograde- ADR	-	3	Epicardial LCx-RCA collaterals	After successful retrograde crossing failed distal cap puncture (bifurcation in site). Failed ADR because of distal re-entry difficulties.
dures	2	RCA	Femoral (8F)- Radial (6F)	ADR	-	3	Absence of interventional collaterals	Failed re-entry with CrossBoss-Stingray system.
Catheter Procedures	3	RCA	Femoral (8F)- Radial (6F)	ADR- Retrograde	-	4	Trans-septals collaterals only	Failed re-entry with CrossBoss-Stingray system. Failed transseptals wire crossing.
Dual Ca	4	RCA	Femoral (8F)- Radial (6F)	Retrograde- ADR	-	3	Trans-septals collaterals only	Failed trans-septal collaterals wire crossing; conversion to ADR with CrossBoss-Stingray system, with failed distal re-entry.
	5	RCA	Double- Radial (6F)	Retrograde- AWE	ADR	3	Trans-septals collaterals only	After successful trans-septals crossing, failed proximal and distal cap penetration (also with Confianza pro 12 g wire)